Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 829-841, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37515736

RESUMO

Acrylamide (ACR) is a toxic chemical frequently encountered in daily life, posing health risks. This study aimed to elucidate the molecular-level mechanism of ACR's toxic effects on testicles and investigate whether Vitamin E can mitigate these effects. A total of 40 adult pregnant rats were utilized, divided into four groups: Control, ACR, Vitamin E, and ACR + Vitamin E. ACR and Vitamin E were administered to the mother rats during pregnancy and lactation, and to the male offspring until the 8th week post-birth. Serum hormone levels, oxidant-antioxidant parameters, histopathological examination of testicular tissue, and mRNA and protein levels of the testicular and liver aromatase gene were analyzed. Spermiogram analysis was conducted on the collected sperm samples from the male offspring. The results revealed that ACR exposure adversely affected hormone levels, oxidant-antioxidant parameters, histological findings, as well as aromatase gene and protein expressions. However, Vitamin E administration effectively prevented the toxic effects of ACR. These findings demonstrate that ACR application significantly impairs the reproductive performance of male offspring rats by increasing liver aromatase activity.


Assuntos
Antioxidantes , Vitamina E , Gravidez , Feminino , Ratos , Masculino , Animais , Vitamina E/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Testículo , Acrilamida/toxicidade , Acrilamida/metabolismo , Aromatase/genética , Aromatase/metabolismo , Aromatase/farmacologia , Sêmen/metabolismo , Estresse Oxidativo , Oxidantes/metabolismo , Oxidantes/farmacologia , Hormônios/farmacologia
2.
Physiol Behav ; 275: 114450, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145817

RESUMO

OBJECTIVE: Acrylamide (AA) is toxic and forms in food that undergoes high-temperature processing. This study aimed to investigate the effects of AA-induced toxicity on renal tissue in pinealectomized rats and the possible protective effect of exogenous Melatonin (ML) administration. MATERIALS AND METHODS: Sixty rats were randomized into 6 groups (n = 10): Sham, Sham+AA, Sham+AA+ML, PX, PX+AA, and PX+AA+ML. Sham and pinealectomized rats received AA (25 mg/kg/day orally) and ML (0.5 ml volume at 10 mg/kg/day, intraperitoneal) for 21 days. RESULTS: The results showed that malondialdehyde (MDA), total oxidant status (TOS), oxidative stress index (OSI), tumor necrosis factor-α (TNF-α), and interleukin 1ß (IL-1ß) levels of the kidney and urea and creatinine levels of serum in the PX (pinealectomy)+AA group were more increased than in the Sham+AA group. In addition, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant status (TAS) levels decreased more in the PX+AA group than in the Sham+AA group. Also, we observed more histopathologic damage in the PX+AA group. On the other hand, up-regulation of kidney tissue antioxidants, down-regulation of tissue oxidants, and improvement in kidney function were achieved with ML treatment. Also, histopathological findings such as inflammatory cell infiltration, shrinkage of glomeruli, and dilatation of tubules caused by AA toxicity improved with ML treatment. CONCLUSION: ML supplementation exhibited adequate nephroprotective effects against the nephrotoxicity of AA on pinealectomized rat kidney tissue function by balancing the oxidant/antioxidant status and suppressing the release of proinflammatory cytokines.


Assuntos
Antioxidantes , Melatonina , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Pinealectomia , Acrilamida/toxicidade , Acrilamida/metabolismo , Ratos Wistar , Estresse Oxidativo , Glutationa/metabolismo , Rim/metabolismo , Rim/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Oxidantes/metabolismo , Oxidantes/farmacologia , Superóxido Dismutase/metabolismo , Malondialdeído/metabolismo
3.
J Agric Food Chem ; 71(42): 15785-15795, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830900

RESUMO

Acrylamide (AA), commonly formed in carbohydrate-rich thermally processed foods, exerts harmful effects on the kidney. Allicin, from crushed garlic cloves, exhibits strong biological activities. In the current study, the protection mechanisms of allicin against AA-caused nephrotoxicity were comprehensively examined using an in vivo rat model based on previous research that allicin plays a key role in improving renal function. The results showed that allicin attenuated histological changes of the kidney and ameliorated renal function. Damaged mitochondrial structures, upregulated voltage-dependent anion channel 1 expression, and decreased membrane potential and adenosine 5'-triphosphate levels were observed after AA treatment. Surprisingly, allicin notably reversed the adverse effects. Further, allicin effectively restored mitochondrial function via modulating mitochondrial biogenesis and dynamics, which might be associated with the upregulated expression of sirtuin 1 (SIRT1). Meanwhile, allicin dramatically activated the SIRT1 activity and subsequently inhibited p53 acetylation, prevented the translocation of cytochrome c to the cytoplasm, and reduced the caspase expression, thus further inhibiting mitochondrial apoptosis caused by AA. In summary, the relieving effect of allicin on AA-caused nephrotoxicity lies in its inhibition of mitochondrial dysfunction and mitochondrial apoptosis.


Assuntos
Acrilamida , Sirtuína 1 , Ratos , Animais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Acrilamida/toxicidade , Acrilamida/metabolismo , Apoptose , Ácidos Sulfínicos/farmacologia , Dissulfetos/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo
4.
Environ Pollut ; 337: 122508, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673322

RESUMO

The toxicity of acrylamide (AA) has continuously attracted wide concerns as its extensive presence from both environmental and dietary sources. However, its hepatic metabolic transformation and metabolic fate still remain unclear. This study aims to unravel the metabolic profile and glutathione (GSH) mediated metabolic fate of AA in liver of rats under the dose-dependent exposure. We found that exposure to AA dose-dependently alters the binding of AA and GSH and the generation of mercapturic acid adducts, while liver as a target tissue bears the metabolic transformation of AA via regulating GSH synthesis and consumption pathways, in which glutamine synthase (GSS), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase P1 (GSTP1) play a key role. In response to high- and low-dose exposures to AA, there were significant differences in liver of rats, including the changes in GSH and cysteine (CYS) activities and the conversion ratio of AA to glycidamide (GA), and liver can affect the transformation of AA by regulating the GSH-mediated metabolic pathway. Low-dose exposure to AA activates GSH synthesis pathway in liver and upregulates GSS activity and CYS content with no change in γ-glutamyl transpeptidase 1 (GGT1) activity. High-dose exposure to AA activates the detoxification pathway of GSH and increases GSH consumption by upregulating GSTP1 activity. In addition, molecular docking results showed that most of the metabolic molecules transformed by AA and GA other than themselves can closely bind to GSTP1, GSS, GGT1, N-acetyltransferase 8, and dimethyl sulfide dehydrogenase 1. The binding of AA-GSH and GA-GSH to GSTP1 and CYP2E1 enzymes determine the tendentiousness between toxicity and detoxification of AA, which exerts a prospective avenue for targeting protective role of hepatic enzymes against in vivo toxicity of AA.


Assuntos
Acrilamida , Citocromo P-450 CYP2E1 , Ratos , Animais , Acrilamida/toxicidade , Acrilamida/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , Acetilcisteína/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Metaboloma , Glutationa/metabolismo , Compostos de Epóxi/metabolismo
5.
J Trace Elem Med Biol ; 80: 127274, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562273

RESUMO

BACKGROUND: Acrylamide (ACR) is a heat-related carcinogen used in cooking some foods as well as in other thermal treatments. The present study aims to investigate the possible protective effect of boron (BA) against ACR-induced toxicity of kidney, brain, heart, testis, and bladder tissues in rats. METHODS: Rats have been divided into 5 equal groups: Control (saline), ACR (38.27 mg/kg), BA (20 mg/kg), BA+ ACR (10 mg/kg + ACR), and BA+ ACR (20 mg/kg BA+ACR). Kidney tissue from rats was collected and the levels of malondialdehyde (MDA), glutathione (GSH), and the activity of superoxide dismutase (SOD) were measured. In addition, the kidneys of these animals, as well as the brain, heart, testes, and bladder tissues were examined for possible histological changes. Total Nrf2 and Keap-1 protein expression in kidney, heart, and testis tissues was examined by immunohistochemistry. RESULTS: While significant increases in MDA levels were observed in the kidneys of rats receiving ACR alone, significant decreases in antioxidant markers (SOD and GSH) were observed. Besides, kidney, brain, heart, and testicular tissues were analyzed and damage was observed in the groups receiving ACR. However, no significant histologic changes were noted in the bladder tissue. Both dosages of BA in combination with ACR improved the changes in ACR-induced antioxidant tissue parameters. Despite the fact that MDA levels were decreased with these two dosages, histological structural abnormalities were found to be greatly improved. CONCLUSION: Our results show that BA has a strong protective effect on ACR-induced multi-organ toxicity. The study results show that BA could be a potential element to reduce ACR toxicity to which we are often exposed.


Assuntos
Antioxidantes , Boro , Masculino , Ratos , Animais , Antioxidantes/metabolismo , Boro/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Testículo/metabolismo , Cardiotoxicidade/tratamento farmacológico , Acrilamida/toxicidade , Acrilamida/metabolismo , Estresse Oxidativo , Transdução de Sinais , Glutationa/metabolismo , Superóxido Dismutase/metabolismo
6.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446793

RESUMO

Acrylamide (ACR) is produced under high-temperature cooking of carbohydrate-rich foods via the Maillard reaction. It has been reported that ACR has hepatic toxicity and can induce liver circadian disorder. A high fat diet (HFD) could dysregulate liver detoxification. The current study showed that administration of ACR (100 mg/kg) reduced the survival rate in HFD-fed mice, which was more pronounced when treated during the night phase than during the day phase. Furthermore, ACR (25 mg/kg) treatment could cause chronotoxicity in mice fed a high-fat diet, manifested as more severe mitochondrial damage of liver during the night phase than during the day phase. Interestingly, HFD induced a higher CYP2E1 expressions for those treated during the night phase, leading to more severe DNA damage. Meanwhile, the expression of gut tight junction proteins also significantly decreases at night phase, leading to the leakage of LPSs and exacerbating the inflammatory response at night phase. These results indicated that a HFD could induce the chronotoxicity of ACR in mice liver, which may be associated with increases in CYP2E1 expression in the liver and gut leak during the night phase.


Assuntos
Citocromo P-450 CYP2E1 , Dieta Hiperlipídica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Regulação para Cima , Acrilamida/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
7.
Environ Pollut ; 334: 122132, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414124

RESUMO

The increased prevalence of human infertility due to male reproductive disorders has been linked to extensive exposure to chemical endocrine disruptors. Acrylamide (AA) is a compound formed spontaneously during the thermal processing of some foods that are mainly consumed by children and adolescents. We previously found that prepubertal exposure to AA causes reduced sperm production and functionality. Oxidative stress is recognized as the main cause of reduced sperm quality and quantity. In this sense, our objective was to evaluate the expression and activity of genes related to enzymatic antioxidant defense, nonprotein thiols, lipid peroxidation (LPO), protein carbonylation (PC) and DNA damage in the testes of rats exposed to acrylamide (2.5 or 5 mg/kg) from weaning to adult life by gavage. For the AA2.5 and AA5 groups, there were no alterations in the transcript expression of genes related to enzymatic antioxidant defense. The enzymatic activities and metabolic parameters were also not affected in the AA2.5 group. For the AA5 group, the enzymatic activities of G6PDH and GPX were reduced, SOD was increased, and protein carbonylation (PC) was increased. Data were also evaluated by Integrate Biomarker Response (IBRv2), a method to analyze and summarize the effects on biomarkers between doses. The IBRv2 index was calculated as 8.9 and 18.71 for AA2.5 and AA5, respectively. The following biomarkers were affected by AA2.5: decreased enzymatic activities of G6PDH, SOD, and GPX, increased GST and GSH, increased LPO and PC, and decreased DNA damage. For AA5, decreased enzymatic activities of G6PDH, GST, CAT and GPX, increased SOD and GSH, increased PC, and decreased LPO and DNA damage were observed. In conclusion, AA exposure during the prepubertal period causes imbalances in the testicular enzymatic antioxidant defense, contributing to the altered spermatic scenario in the testes of these rats.


Assuntos
Antioxidantes , Testículo , Humanos , Criança , Masculino , Ratos , Animais , Adolescente , Antioxidantes/metabolismo , Carbonilação Proteica , Testículo/metabolismo , Peroxidação de Lipídeos , Acrilamida/toxicidade , Acrilamida/metabolismo , Sêmen/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Biomarcadores/metabolismo , Glutationa/metabolismo
8.
Environ Sci Pollut Res Int ; 30(30): 75262-75272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37213021

RESUMO

Osteoarthritis (OA) is the most prevalent degenerative joint disease, and acrylamide is a chemical produced when foods are processed at high temperatures. Recent epidemiological research linked acrylamide exposure from the diet and environment to a number of medical disorders. However, whether acrylamide exposure is associated with OA is still uncertain. This study was aimed at assessing the relationship between OA and hemoglobin adducts of acrylamide and its metabolite glycidamide (HbAA and HbGA). Data were taken from four cycles of the US NHANES database (2003-2004, 2005-2006, 2013-2014, 2015-2016). Individuals aged between 40 and 84 years who had complete information on arthritic status as well as HbAA and HbGA levels were eligible for inclusion. Univariate and multivariate logistic regression analysis s was performed to determine associations between study variables and OA. Restricted cubic splines (RCS) were used to examine non-linear associations between the acrylamide hemoglobin biomarkers and prevalent OA. A total of 5314 individuals were included and 954 (18%) had OA. After adjusting for relevant confounders, the highest quartiles (vs. lowest) of HbAA (adjusted odds ratio (aOR) = 0.87, 95% confidence interval (CI), 0.63-1.21), HbGA (aOR = 0.82, 95% CI, 0.60-1.12), HbAA + HbGA (aOR = 0.86, 95% CI, 0.63-1.19), and HbGA/HbAA (aOR = 0.88, 95% CI, 0.63--1.25) were not significantly associated with greater odds for OA. RCS analysis revealed that HbAA, HbGA, and HbAA + HbGA levels were non-linearly and inversely associated with OA (p for non-linearity < 0.001). However, the HbGA/HbAA ratio displayed a U-shaped relationship with prevalent OA. In conclusion, acrylamide hemoglobin biomarkers are non-linearly associated with prevalent OA in a general US population. These findings implicate ongoing public health concerns for widespread exposure to acrylamide. Further studies are still warranted to address the causality and biologic mechanisms underlying the association.


Assuntos
Acrilamida , Osteoartrite , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Inquéritos Nutricionais , Acrilamida/metabolismo , Hemoglobinas/metabolismo , Compostos de Epóxi/metabolismo , Biomarcadores , Osteoartrite/epidemiologia
9.
Environ Pollut ; 331(Pt 2): 121896, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236588

RESUMO

Acrylamide (AA), a chemical compound currently classified as "reasonably anticipated to be a human carcinogen", is formed through the Maillard reaction in processed carbohydrate-rich foods and is also present in tobacco smoke. The primary sources of AA exposure in the general population are dietary intake and inhalation. Within a 24-h period, humans eliminate approximately 50% of AA in the urine, predominantly in the form of mercapturic acid conjugates such as N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2- hydroxyethyl)-L-cysteine (GAMA3), and N-acetyl-3-[(3-amino-3-oxopropyl)sulfinyl]-L-alanine (AAMA-Sul). These metabolites serve as short-term biomarkers for AA exposure in human biomonitoring studies. In this study, we analysed first-morning urine samples from the adult population (aged 18-65 years) residing in the Valencian Region, Spain, (n = 505). AAMA, GAMA-3 and AAMA-Sul were quantified in 100% of the analysed samples, with geometric means (GM) of 84, 11 and 26 µg L-1, respectively, while the estimated daily intake of AA in the studied population ranged from 1.33 to 2.13 µg·kg-bw-1·day-1 (GM). Statistical analysis of the data indicated that the most significant predictors of AA exposure were smoking and the amount of potato fried products and, biscuits and pastries consumed last 24 h. Based on risk assessment approaches conducted, the findings suggest that exposure to AA could pose a potential health risk. Therefore, it is crucial to closely monitor and continuously evaluate AA exposure to ensure the well-being of the population.


Assuntos
Acrilamida , Monitoramento Biológico , Adulto , Humanos , Acrilamida/metabolismo , Espanha , Acetilcisteína/metabolismo , Fumar
10.
Braz J Microbiol ; 54(3): 1645-1654, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37036659

RESUMO

Microbial L-asparaginase is well known for its application in food industries to reduce acrylamide content in fried starchy food. L-asparaginase produced by Arctic actinomycetes Streptomyces koyangensis SK4 was purified and studied for biochemical characterization. The L-asparaginase was purified with a yield of 15.49% and final specific activity of 179.77 IU/mg of protein. The enzyme exhibited a molecular weight of 43 kDa. The optimum pH and temperature for maximum activity of the purified enzyme were 8.5 °C and 40 °C, respectively. The enzyme expressed maximum activity at an incubation period of 30 min and a substrate concentration of 0.06 M. The enzyme has a low Km value of 0.041 M and excellent substrate specificity toward L-asparagine. The enzyme activity was inhibited by metal ions Ba2+ and Hg2+, while Mn2+ and Mg2+ enhanced the activity. The study evaluated the acrylamide reduction potential of L-asparaginase from Streptomyces koyangensis SK4 in potato chips. The blanching plus L-asparaginase treatment of potato slices resulted in a 50% reduction in acrylamide content. The study illustrated an effective acrylamide reduction strategy in potato chips using L-asparaginase from a psychrophilic actinomycete. Besides the acrylamide reduction potential, L-asparaginase from Streptomyces koyangensis SK4 also did not exhibit any glutaminase or urease activity which is an outstanding feature of L-asparaginase to be used as a chemotherapeutic agent.


Assuntos
Asparaginase , Streptomyces , Asparaginase/genética , Asparaginase/metabolismo , Acrilamida/química , Acrilamida/metabolismo , Streptomyces/metabolismo , Temperatura
11.
Food Chem Toxicol ; 176: 113775, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037409

RESUMO

Acrylamide (ACR), a potential neurotoxin, is generated from the Maillard reaction between reducing sugars and free amino acids during food processing. Our work focuses on clarifying the role of the leucine-rich repeat kinase 2 (LRRK2) and nuclear factor of activated T cells, cytoplasmic 2 (NFATc2) in the polarization of BV2 cells to the M1 proinflammatory type induced by ACR. Specifically, ACR promoted the phosphorylation of LRRK2 and NFATc2 in BV2 microglia. Furthermore, selectively phosphorylated LRRK2 by ACR induced nuclear translocation of NFATc2 to trigger a neuroinflammatory cascade. Knock-down of LRRK2 by silencing significantly diminished ACR-induced microglial neurotoxic effect with the decline of IL-1ß, IL-6, and iNOS levels and the decrease of NFATc2 expression in BV2 cells. After pretreated with Toll-Like Receptor 2 (TLR2) and TLR4 inhibitors separately, both the activation of LRRK2 and the release of pro-inflammatory factors were inhibited in BV2 cells. Gallic acid (GA) is ubiquitous in most parts of the medicinal plant. GA alleviated the increased CD11b expression, IL-6 and iNOS levels induced by ACR in BV2 microglia. In conclusion, this study shows that ACR leads to the cascade activation of LRRK2-NFATc2 mediated by TLR2 and TLR4 to induce microglial toxicity.


Assuntos
Microglia , Receptor 2 Toll-Like , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Acrilamida/metabolismo , Receptor 4 Toll-Like/metabolismo , Interleucina-6/metabolismo , Linhagem Celular , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo
12.
Food Chem Toxicol ; 175: 113753, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36997053

RESUMO

Acrylamide (ACR) is an important chemical raw material for wastewater treatment, paper industry and textile industry, which is widely exposed from occupational, environmental and dietary situation. ACR has neurotoxicity, genotoxicity, potential carcinogenicity and reproductive toxicity. Recent study indicates that ACR affected oocyte maturation quality. In the present study, we reported the effects of ACR exposure on zygotic genome activation (ZGA) in embryos and its related mechanism. Our results showed that ACR treatment caused 2-cell arrest in mouse embryos, indicating the failure of ZGA, which was confirmed by decreased global transcription levels and aberrant expression of ZGA-related and maternal factors. We found that histone modifications such as H3K9me3, H3K27me3 and H3K27ac levels were altered, and this might be due to the occurrence of DNA damage, showing with positive γ-H2A.X signal. Moreover, mitochondrial dysfunction and high levels of ROS were detected in ACR treated embryos, indicating that ACR induced oxidative stress, and this might further cause abnormal distribution of endoplasmic reticulum, Golgi apparatus and lysosomes. In conclusion, our results indicated that ACR exposure disrupted ZGA by inducing mitochondria-based oxidative stress, which further caused DNA damage, aberrant histone modifications and organelles in mouse embryos.


Assuntos
Acrilamida , Zigoto , Camundongos , Animais , Acrilamida/metabolismo , Zigoto/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Dano ao DNA
13.
Food Chem Toxicol ; 174: 113658, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36780936

RESUMO

Acrylamide (AA) is formed in some foods by the cooking process at high temperatures, and it could be a carcinogen in humans and rodents. The purpose of the current study was to reveal the possible protective effects of melatonin against AA-induced hepatic oxidative stress, hepatic inflammation, and hepatocellular proliferation in pinealectomized rats. Hence, the sham and pinealectomized rats were consecutively given AA alone (25 mg/kg) or with melatonin (10 mg/kg) for 21 days. Melatonin acts as an antioxidant, anti-inflammatory, and antiapoptotic agent and introduces as a therapeutic strategy for AA-induced hepatotoxicity. Melatonin supplementation reduced AA-caused liver damage by decreasing the serum AST, ALT, and ALP levels. Melatonin raised the activities of SOD and CAT and levels of GSH and suppressed hepatic inflammation (TNF-α) and hepatic oxidative stress in liver tissues. Moreover, histopathological alterations and the disturbances in immunohistochemical expression of NF-κB and Ki67 were improved after melatonin treatment in AA-induced hepatotoxicity. Overall, our results demonstrate that melatonin supplementation exhibits adequate hepatoprotective effects against hepatotoxicity of AA on pinealectomized rat liver architecture and the tissue function through the equilibration of oxidant/antioxidant status, the regulation of cell proliferation and the suppression of the release of proinflammatory cytokines.


Assuntos
Carcinoma Hepatocelular , Doença Hepática Induzida por Substâncias e Drogas , Neoplasias Hepáticas , Melatonina , Humanos , Ratos , Animais , Antioxidantes/farmacologia , NF-kappa B/metabolismo , Melatonina/farmacologia , Acrilamida/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Estresse Oxidativo , Transdução de Sinais , Fígado , Inflamação/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
14.
Environ Sci Pollut Res Int ; 30(14): 40116-40131, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36607571

RESUMO

In the present work, 224 adult female zebrafish (56 fish in each group) were randomly divided into four groups (two control groups and two toxicity groups) as per duration of exposure (7 and 21 days). All fish of the two toxicity groups were exposed to 0.610 mM acrylamide (ACR) concentration for 7 and 21 days. The effects of ACR exposure on behavior, oxidative stress biomarkers, molecular expression of antioxidant genes (sod, cat, and nrf2), and histopathological examination of the brain and eye were examined. Our result shows that ACR exposure for 7 days produced an anxiety-like behavior in zebrafish. Short-term exposure of ACR resulted in alterations of oxidative stress markers (SOD and CAT activity, and the level of GSH and MDA) in the brain and eye of zebrafish. However, the antioxidant defense system of adult female zebrafish could be able to counteract the free radicals generated in long-term ACR exposure as indicated by non-significant difference in oxidative insult following short-term and long-term exposure. ACR exposure downregulated the mRNA expression of the sod, cat, and nrf2 (nuclear factor erythroid 2-related factor 2) genes in the brain and eye without significant difference between the two toxicity groups. Mild histological changes in the dorsal telencephalic area, tectum opticum, medulla, and hypothalamus area of the brain of zebrafish have been observed following short-term and long-term ACR exposure. In the eye, marked histological changes in the retinal pigmented epithelium layer (RPE), structural changes of the photoreceptor layer (PRL) with disorganized layer of rods and cones, and reduction of the relative thickness of the RPE, PRL, outer nuclear layer (ONL), and inner nuclear layer (INL) have been noted following ACR exposure for 21 days as compared to 7 days. ACR produced neurobehavioral aberrations and oxidative stress within 7 days of exposure, while various histological changes in the brain and eyes have been observed following long-term exposure (21 days) to ACR.


Assuntos
Antioxidantes , Peixe-Zebra , Animais , Feminino , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Acrilamida/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Encéfalo , Superóxido Dismutase/metabolismo
15.
J Endocrinol Invest ; 46(8): 1533-1547, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36602706

RESUMO

PURPOSE: Acrylamide (AA) is a potential carcinogen that mainly comes from fried, baked and roasted foods, and Hb adducts of AA (HbAA) and its metabolite glycidamide (HbGA) are the biomarkers of its exposure. Increasing evidence suggests that AA is associated with various hormone-related cancers. This study aims to explore the association of HbAA and HbGA with female serum sex hormone concentrations. METHODS: 942 women from the National Health and Nutrition Examination Survey cycles (2013-2016) were included in this cross-sectional study. The associations between HbAA or HbGA or HbGA/HbAA and sex hormones were assessed by the multiple linear regression. Further stratified analyses were conducted to figure out the effects of menopausal status, BMI and smoking status on sex hormone levels. RESULTS: Among all participants, 597 were premenopausal and 345 were postmenopausal. HbAA was positively associated with both two androgen indicators. Specifically, a ln-unit increase in HbAA was associated with 0.41 ng/dL higher ln(total testosterone, TT) (95% CI 0.00, 0.27) and 0.14 ng/dL higher ln(free testosterone) (95%CI 0.00, 0.28), respectively. However, HbGA concentrations had no association with sex hormones in the overall population. Additionally, HbGA/HbAA was negatively associated with TT and SHBG in the overall population as well as postmenopausal women. In stratified analysis, higher HbAA was associated with rising TT in postmenopausal women (ß = 0.29, 95%CI 0.04, 0.53) and underweight/normal-weight women (ß = 0.18, 95%CI 0.03, 0.33). Other indicators had no significant association detected in estradiol and sex hormone-binding globulin. CONCLUSION: Our results revealed that HbAA was positively associated with androgen concentrations, especially in postmenopausal and BMI < 25 women.


Assuntos
Acrilamida , Hemoglobinas , Humanos , Feminino , Inquéritos Nutricionais , Hemoglobinas/metabolismo , Acrilamida/metabolismo , Androgênios , Estudos Transversais , Pós-Menopausa , Hormônios Esteroides Gonadais , Testosterona , Globulina de Ligação a Hormônio Sexual
16.
Benef Microbes ; 15(1): 39-49, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38350489

RESUMO

Neurotoxicity is caused by damage to the brain tissue by neurotoxic agents present in the environment and artificial substances produced by human beings. Acrylamide (ACR) is one such chemical substance that causes neurotoxicity, affecting the brain cells. This neurotoxicity causes damage to the sensory and metabolic functions. The current research investigates the favourable effect of probiotic EcN (Escherichia coli Nissle 1917) on ACR-induced neurotoxicity in zebrafish. The protective role of EcN against ACR induced toxicity was assessed based on behaviour, biochemical, and gene expression analysis. Initially, the colonisation period of EcN in the zebrafish gut was determined and EcN was given orally to the zebrafish only once prior to the ACR treatment. Very interestingly, this dosage was able to ameliorate the adverse effects of ACR significantly in the brain cells. Quantification of oxidative stress and neuronal cell death clearly vindicate the efficiency of probiotic EcN in reversing the damages caused by ACR. EcN is being explored largely in recent days for its therapeutic applications. This study strongly supports the view that EcN can be developed as a supplement to the patients diagnosed with neuronal cell toxicity.


Assuntos
Escherichia coli , Probióticos , Animais , Humanos , Escherichia coli/genética , Peixe-Zebra , Acrilamida/toxicidade , Acrilamida/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Estresse Oxidativo
17.
Neurotox Res ; 40(6): 2016-2026, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36550222

RESUMO

Acrylamide (AM) is a potent neurotoxin and carcinogen that is mainly formed by the Maillard reaction of asparagine with starch at high temperatures. However, the toxicity mechanism underlying AM has not been investigated from a proteomic perspective, and the regulation of protein expression by AM remains poorly understood. This research was the first to utilize proteomics to explore the mechanism of AM exposure-induced neuroinflammation. Target proteins were obtained by differential protein analysis, functional annotation, and enrichment analysis of proteomics. Then, molecular biology methods, including Western blot, qPCR, and immunofluorescence, were used to verify the results and explore possible mechanisms. We identified 100 key differential metabolites by proteomic analysis, which was involved in the occurrence of various biological functions. Among them, the KEGG pathway enrichment analysis showed that the differential proteins were enriched in the P53 pathway, sulfur metabolism pathway, and ferroptosis. Finally, the differential target protein we locked was LARP7. Molecular biological verification found that AM exposure inhibited the expression of LARP7 and induced the burst of inflammation, while SRT1720 agonist treatment showed no effect on LARP7, but significant changes in inflammatory factors and NF-κB. Taken together, these findings suggested that AM may activate NF-κB to induce neuroinflammation by inhibiting the LARP7-SIRT1 pathway. And our study provided a direction for AM-induced neurotoxicity through proteomics and multiple biological analysis methods.


Assuntos
NF-kappa B , Sirtuína 1 , Humanos , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Doenças Neuroinflamatórias , Microglia , Acrilamida/toxicidade , Acrilamida/metabolismo , Proteômica , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/farmacologia
18.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500312

RESUMO

Thermal processing of certain foods implies the formation of acrylamide, which has been proven to provoke adverse effects on human health. Thus, several strategies to mitigate it have been developed. One of them could be the application of organosulfur compounds obtained from natural sources to react with the acrylamide, forming non-toxic adducts. A DFT study of the acrylamide reaction with the organosulfur model compounds L-cysteine and L-glutathione by Michael addition and a free radical pathway complemented by a kinetic study of these model molecules has been applied. The kinetic evaluation results demonstrate that the L-glutathione reaction exhibited a higher rate constant than the other studied compound.


Assuntos
Acrilamida , Cisteína , Humanos , Acrilamida/metabolismo , Cisteína/metabolismo , Glutationa
19.
Front Public Health ; 10: 972368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249258

RESUMO

Background: The association between acrylamide exposure and the odds of developmental disabilities (DDs) is unclear. We conducted this analysis to explore whether acrylamide exposure is related to DDs. Methods: We analyzed a sample of 1,140 children aged 6-17 years old from the US National Health and Nutrition Examination Survey 2013-2014 to 2015-2016. DDs were determined by reports of parents. Acrylamide exposure was evaluated by the hemoglobin adducts of acrylamide (HbAA) and its major metabolite glycidamide (HbGA). We investigated the association using binomial logistic regression analysis by taking HbAA and HbGA as continuous or quartile variables. Restricted cubic splines (RCS) were used to explore the non-linear relationship between HbAA or HbGA and the odds of DDs. Interaction analysis and propensity score matching (PSM) were used to validate the results. Results: A total of 134 participants were reported to have DDs. The median level of HbAA and HbGA was 41.6 and 40.5 pmol/g Hb, respectively. HbAA and HbGA were not associated with the odds of DDs when taken as continuous variables. When divided into quartiles, there was no evidence for a linear trend for HbAA and HbGA. RCS showed that there was a J-shaped association between HbGA and the odds of DDs (P for non-linearity, 0.023). The results were consistent in interaction analysis by age, gender, and race, and after PSM. Conclusion: HbGA level was associated with the odds of DDs in a J-shaped manner among children. Further investigation is warranted to determine the causality and underlying mechanisms.


Assuntos
Acrilamida , Deficiências do Desenvolvimento , Acrilamida/metabolismo , Adolescente , Criança , Estudos Transversais , Deficiências do Desenvolvimento/epidemiologia , Hemoglobinas/análise , Hemoglobinas/metabolismo , Humanos , Inquéritos Nutricionais
20.
Aging (Albany NY) ; 14(17): 6887-6904, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36069806

RESUMO

In this study we investigated the effects of multigenerational exposures to acrylamide (ACR) on ovarian function. Fifty-day-old Wistar albino female rats were divided into the control and ACR-treated groups (2.5, 10, and 20 mg/kg/day) from day 6 of pregnancy until delivery. The obtained females of the first (AF1) and second generation (AF2) were euthanized at 4 weeks of age, and plasma and ovary samples were collected. We found that in utero multigenerational exposure to ACR reduced fertility and ovarian function in AF1 through inducing histopathological changes as evidenced by the appearance of cysts and degenerating follicles, oocyte vacuolization, and pyknosis in granulosa cells. TMR red positive cells confirmed by TUNEL assay were mostly detected in the stroma of the treated groups. Estradiol and IGF-1 concentrations significantly decreased as a result of decreased CYP19 gene and its protein expression. However, ACR exposure in AF2 led to early ovarian aging as evidenced by high estradiol and progesterone levels among all treated groups compared to control group, corresponding to the upregulation of the CYP19 gene and protein expression. The apoptotic cells of the stroma were greatly detected compared to that in the control group, whereas no significant difference was reported in ESR1 and ESR2 gene expression. This study confirms the developmental adverse effects of ACR on ovarian function and fertility in at least two consecutive generations. It emphasizes the need for more effective strategies during pregnancy, such as eating healthy foods and avoiding consumption of ACR-rich products, including fried foods and coffee.


Assuntos
Acrilamida , Ovário , Acrilamida/metabolismo , Acrilamida/toxicidade , Envelhecimento , Animais , Aromatase , Café/metabolismo , Estradiol/metabolismo , Feminino , Desenvolvimento Fetal , Furilfuramida/metabolismo , Furilfuramida/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Gravidez , Progesterona/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...